Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.302
Filtrar
1.
Cell Rep ; 43(3): 113915, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484736

RESUMO

Tanimoto et al.1 report essential information on teleostean basal ganglia circuitry. This analysis opens gateways into studying neurophysiology, neuropharmacology, and behavior in zebrafish, guided by this complex functional neural system common to all vertebrates.


Assuntos
Deslizamentos de Terra , Peixe-Zebra , Animais , Vias Neurais/fisiologia , Gânglios da Base/fisiologia
2.
Cell Rep ; 43(3): 113916, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484735

RESUMO

The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.


Assuntos
Gânglios da Base , Peixe-Zebra , Animais , Peixe-Zebra/genética , Gânglios da Base/fisiologia , Corpo Estriado , Globo Pálido/fisiologia , Animais Geneticamente Modificados , Mamíferos , Vias Neurais/fisiologia
3.
Cell Rep ; 43(3): 113933, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38460131

RESUMO

Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.


Assuntos
Núcleo Central da Amígdala , Núcleos Septais , Animais , Proteína Quinase C-delta/metabolismo , Anorexia/metabolismo , Neurônios/metabolismo , Núcleo Central da Amígdala/metabolismo , Vias Neurais/fisiologia , Núcleos Septais/fisiologia
4.
Mol Brain ; 17(1): 5, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317261

RESUMO

Entorhinal cortical (EC)-hippocampal (HPC) circuits are crucial for learning and memory. Although it was traditionally believed that superficial layers (II/III) of the EC mainly project to the HPC and deep layers (V/VI) receive input from the HPC, recent studies have highlighted the significant projections from layers Va and VI of the EC into the HPC. However, it still remains unknown whether Vb neurons in the EC provide projections to the hippocampus. In this study, using a molecular marker for Vb and retrograde tracers, we identified that the outer layer of Vb neurons in the medial EC (MEC) directly project to both dorsal and ventral hippocampal dentate gyrus (DG), with a significant preference for the ventral DG. In contrast to the distribution of DG-projecting Vb cells, anterior thalamus-projecting Vb cells are distributed through the outer to the inner layer of Vb. Furthermore, dual tracer injections revealed that DG-projecting Vb cells and anterior thalamus-projecting Vb cells are distinct populations. These results suggest that the roles of MEC Vb neurons are not merely limited to the formation of EC-HPC loop circuits, but rather contribute to multiple neural processes for learning and memory.


Assuntos
Córtex Entorrinal , Neurônios , Camundongos , Animais , Córtex Entorrinal/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Hipocampo/fisiologia , Giro Denteado
5.
Nature ; 627(8003): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383788

RESUMO

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Assuntos
Tomada de Decisões , Vias Neurais , Lobo Parietal , Sinapses , Cálcio/análise , Cálcio/metabolismo , Tomada de Decisões/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Aprendizagem/fisiologia , Microscopia Eletrônica , Inibição Neural , Vias Neurais/fisiologia , Vias Neurais/ultraestrutura , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Lobo Parietal/ultraestrutura , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Realidade Virtual , Modelos Neurológicos
6.
Neural Netw ; 173: 106204, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412738

RESUMO

We explore element-wise convex combinations of two permutation-aligned neural network parameter vectors ΘA and ΘB of size d. We conduct extensive experiments by examining various distributions of such model combinations parametrized by elements of the hypercube [0,1]d and its vicinity. Our findings reveal that broad regions of the hypercube form surfaces of low loss values, indicating that the notion of linear mode connectivity extends to a more general phenomenon which we call mode combinability. We also make several novel observations regarding linear mode connectivity and model re-basin. We demonstrate a transitivity property: two models re-based to a common third model are also linear mode connected, and a robustness property: even with significant perturbations of the neuron matchings the resulting combinations continue to form a working model. Moreover, we analyze the functional and weight similarity of model combinations and show that such combinations are non-vacuous in the sense that there are significant functional differences between the resulting models.


Assuntos
Redes Neurais de Computação , Neurônios , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Encéfalo
7.
Exp Brain Res ; 242(4): 783-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38400992

RESUMO

Aerobic exercise improves the three stages of emotion regulation: perception, valuation and action. It reduces the perception of negative emotions, encourages individuals to reinterpret emotional situations in a positive or non-emotional manner, and enhances control over emotion expression behaviours. These effects are generated via increased prefrontal cortex activation, the strengthening of functional connections between the amygdala and several other brain regions, and the enhancement of the plasticity of key emotion regulation pathways and nodes, such as the uncinate fasciculus. The effect of aerobic exercise on emotion regulation is influenced by the exercise intensity and duration, and by individuals' exercise experience. Future research may explore the key neural basis of aerobic exercise's promotion of emotion regulation.


Assuntos
Regulação Emocional , Humanos , Emoções/fisiologia , Encéfalo/fisiologia , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Exercício Físico , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética
8.
Nature ; 626(8001): 1066-1072, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326610

RESUMO

Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1-4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues5-11. Here we show that dmPFC is recruited and required for OFL in mice. Using cellular-resolution microendoscopic calcium imaging, we demonstrate that dmPFC neurons code for observational fear and do so in a manner that is distinct from direct experience. We find that dmPFC neuronal activity predicts upcoming switches between freezing and moving state elicited by threat. By combining neuronal circuit mapping, calcium imaging, electrophysiological recordings and optogenetics, we show that dmPFC projections to the midbrain periaqueductal grey (PAG) constrain observer freezing, and that amygdalar and hippocampal inputs to dmPFC opposingly modulate observer freezing. Together our findings reveal that dmPFC neurons compute a distinct code for observational fear and coordinate long-range neural circuits to select behavioural responses.


Assuntos
Sinais (Psicologia) , Medo , Vias Neurais , Córtex Pré-Frontal , Aprendizado Social , Animais , Camundongos , Tonsila do Cerebelo/fisiologia , Cálcio/metabolismo , Eletrofisiologia , Medo/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Optogenética , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Aprendizado Social/fisiologia , Reação de Congelamento Cataléptica/fisiologia
9.
Elife ; 132024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390967

RESUMO

Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.


Assuntos
Neuritos , Neurônios , Neurônios/metabolismo , Encéfalo , Córtex Pré-Frontal , Vias Neurais/fisiologia
10.
Nat Rev Neurosci ; 25(3): 143-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316956

RESUMO

The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia.


Assuntos
Regulação da Temperatura Corporal , Temperatura Baixa , Humanos , Animais , Regulação da Temperatura Corporal/fisiologia , Tremor por Sensação de Frio/fisiologia , Vias Neurais/fisiologia , Músculo Esquelético , Mamíferos
11.
Cell Rep ; 43(3): 113829, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38421871

RESUMO

The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.


Assuntos
Núcleos Parabraquiais , Medula Espinal , Camundongos , Animais , Medula Espinal/fisiologia , Tálamo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Vias Neurais/fisiologia
12.
Cortex ; 173: 1-15, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354669

RESUMO

The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.


Assuntos
Encéfalo , Glioma , Humanos , Encéfalo/fisiologia , Função Executiva/fisiologia , Cognição/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Vias Neurais/fisiologia
13.
J Neurosci Methods ; 405: 110080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369027

RESUMO

BACKGROUND: The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence. Addressing such an issue requires selective, pathway-restricted and direction-specific disconnections. NEW METHOD: A recent method associates a retrograde adeno-associated virus (AAV) expressing Cre recombinase with an anterograde AAV expressing a Cre-dependent caspase, making such disconnection feasible by caspase-triggered apoptosis when both constructs meet intracellularly. We injected an AAVrg-Cre-GFP into the ReRh and an AAV5-taCasp into the mPFC. As expected, part of mPFC neurons died, but massive neurotoxicity of the AAVrg-Cre-GFP was found in ReRh, contrasting with normal density of DAPI staining. Other stainings demonstrated increasing density of reactive astrocytes and microglia in the neurodegeneration site. COMPARISON WITH EXISTING METHODS: Reducing the viral titer (by a 4-fold dilution) and injection volume (to half) attenuated toxicity substantially, still with evidence for partial disconnection between mPFC and ReRh. CONCLUSIONS: There is an imperative need to verify potential collateral damage inherent in this type of approach, which is likely to distort interpretation of experimental data. Therefore, controls allowing to distinguish collateral phenotypic effects from those linked to the desired disconnection is essential. It is also crucial to know for how long neurons expressing the Cre-GFP protein remain operational post-infection.


Assuntos
Dependovirus , Tálamo , Ratos , Animais , Dependovirus/genética , Tálamo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Neurônios , Caspases/farmacologia , Vias Neurais/fisiologia
14.
J Neurophysiol ; 131(4): 668-677, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38416714

RESUMO

Functional connectivity is a critical aspect of brain function and is essential for understanding, diagnosing, and treating neurological and psychiatric disorders. It refers to the synchronous activity between different regions of the brain, which gives rise to communication and information processing. Resting-state functional connectivity is a subarea of study that allows researchers to examine brain activity in the absence of a task or stimulus. This can provide insight into the brain's intrinsic functional architecture and help identify neural networks that are active during rest. Thus, determining functional connectivity topography is valuable both clinically and in research. Traditional methods using functional magnetic resonance imaging have proven to be effective, however, they have their limitations. In this review, we investigate the feasibility of using functional near-infrared spectroscopy (fNIRS) as a low-cost, portable alternative for measuring functional connectivity. We first establish fNIRS' ability to detect localized brain activity during task-based experiments. Next, we verify its use in resting-state studies with results showing a high degree of correspondence with resting-state functional magnetic resonance imaging (rs-fMRI). Also discussed are various data-processing methods and the validity of filtering the global signal, which is the current standard for analysis. We consider the possible origins of the global signal, if it contains pertinent neuronal information that could be of importance in better understanding neuronal networks, and what we believe is the best method of approaching signal analysis and regression.


Assuntos
Mapeamento Encefálico , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Mapeamento Encefálico/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Vias Neurais/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição , Descanso/fisiologia , Imageamento por Ressonância Magnética
15.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38182417

RESUMO

The quest to decode the complex supraspinal mechanisms that integrate cutaneous thermal information in the central system is still ongoing. The dorsal horn of the spinal cord is the first hub that encodes thermal input which is then transmitted to brain regions via the spinothalamic and thalamocortical pathways. So far, our knowledge about the strength of the interplay between the brain regions during thermal processing is limited. To address this question, we imaged the brains of adult awake male mice in resting state using functional ultrasound imaging during plantar exposure to constant and varying temperatures. Our study reveals for the first time the following: (1) a dichotomy in the response of the somatomotor-cingulate cortices and the hypothalamus, which was never described before, due to the lack of appropriate tools to study such regions with both good spatial and temporal resolutions. (2) We infer that cingulate areas may be involved in the affective responses to temperature changes. (3) Colder temperatures (ramped down) reinforce the disconnection between the somatomotor-cingulate and hypothalamus networks. (4) Finally, we also confirm the existence in the mouse brain of a brain mode characterized by low cognitive strength present more frequently at resting neutral temperature. The present study points toward the existence of a common hub between somatomotor and cingulate regions, whereas hypothalamus functions are related to a secondary network.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Masculino , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Percepção
16.
Nat Neurosci ; 27(1): 159-175, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177339

RESUMO

Behavioral and economic theory dictate that we decide between options based on their values. However, humans and animals eagerly seek information about uncertain future rewards, even when this does not provide any objective value. This implies that decisions are made by endowing information with subjective value and integrating it with the value of extrinsic rewards, but the mechanism is unknown. Here, we show that human and monkey value judgements obey strikingly conserved computational principles during multi-attribute decisions trading off information and extrinsic reward. We then identify a neural substrate in a highly conserved ancient structure, the lateral habenula (LHb). LHb neurons signal subjective value, integrating information's value with extrinsic rewards, and the LHb predicts and causally influences ongoing decisions. Neurons in key input areas to the LHb largely signal components of these computations, not integrated value signals. Thus, our data uncover neural mechanisms of conserved computations underlying decisions to seek information about the future.


Assuntos
Habenula , Neurônios , Animais , Humanos , Neurônios/fisiologia , Recompensa , Habenula/fisiologia , Incerteza , Vias Neurais/fisiologia
17.
Nature ; 626(7998): 347-356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267576

RESUMO

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Assuntos
Agressão , Aprendizagem da Esquiva , Hipotálamo , Vias Neurais , Neurônios , Ocitocina , Aprendizado Social , Animais , Camundongos , Agressão/fisiologia , Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Comportamento Social , Aprendizado Social/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Plasticidade Neuronal
18.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38265300

RESUMO

The rostral forelimb area (RFA) in the rat is a premotor cortical region based on its dense efferent projections to primary motor cortex. This study describes corticocortical connections of RFA and the relative strength of connections with other cortical areas. The goal was to provide a better understanding of the cortical network in which RFA participates, and thus, determine its function in sensorimotor behavior. The RFA of adult male Long-Evans rats (n = 6) was identified using intracortical microstimulation techniques and injected with the tract-tracer, biotinylated dextran amine (BDA). In post-mortem tissue, locations of BDA-labeled terminal boutons and neuronal somata were plotted and superimposed on cortical field boundaries. Quantitative estimates of terminal boutons in each region of interest were based on unbiased stereological methods. The results demonstrate that RFA has dense connections with primary motor cortex and frontal cortex medial and lateral to RFA. Moderate connections were found with insular cortex, primary somatosensory cortex (S1), the M1/S1 overlap zone, and lateral somatosensory areas. Cortical connections of RFA in rat are strikingly similar to cortical connections of the ventral premotor cortex in non-human primates, suggesting that these areas share similar functions and allow greater translation of rodent premotor cortex studies to primates.


Assuntos
Córtex Motor , Ratos , Masculino , Animais , Vias Neurais/fisiologia , Ratos Long-Evans , Córtex Motor/fisiologia , Membro Anterior/fisiologia , Primatas , Mapeamento Encefálico
19.
Neuron ; 112(6): 893-908, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38295791

RESUMO

Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.


Assuntos
Função Executiva , Tálamo , Função Executiva/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Cognição/fisiologia , Lobo Frontal , Córtex Pré-Frontal/fisiologia
20.
Proc Natl Acad Sci U S A ; 121(4): e2313048121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241439

RESUMO

The thalamus provides the principal input to the cortex and therefore understanding the mechanisms underlying cortical integration of sensory inputs requires to characterize the thalamocortical connectivity in behaving animals. Here, we propose tangential insertions of high-density electrodes into mouse cortical layer 4 as a method to capture the activity of thalamocortical axons simultaneously with their synaptically connected cortical neurons. This technique can reliably monitor multiple parallel thalamic synaptic inputs to cortical neurons, providing an efficient approach to map thalamocortical connectivity in both awake and anesthetized mice.


Assuntos
Neurônios , Tálamo , Camundongos , Animais , Neurônios/fisiologia , Tálamo/fisiologia , Axônios/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...